
Efficiently avoiding saddle points with zero order methods: No gradients required
Lampros Flokas*, Emmanouil V. Vlatakis-Gkaragkounis*, Georgios Piliouras

Columbia University & Singapore University of Technology and Design

Introduction

⇒ Given function f : Rd → R, solving the problem
x∗ = arg min

x∈Rd
f (x)

is one of the building blocks that many machine learning algorithms are
based on.
⇒ Unfortunately access to gradient evaluations may be either
computationally inefficient or even impossible.
Examples: Hyper-parameter tuning, black-box adversarial attacks on
DNN, computer network control, Simulation or Bandit optimization.

Are there scalable zero order methods that can
safely and efficiently avoid strict saddle points
and always converge to local minima of f (x)?

Saddle points

⇒ Strict saddle points: ∇f = 0 & λmin(∇2f) < 0

1.0
0.5

0.0

0.5

1.0 1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

Figure: Strict saddle points are not second order stationary

⇒ Non strict saddle points ∇f = 0 & λmin(∇2f) = 0
Can be local minimum or just second order stationary point.
If only strict saddles, convergence to SOSPs is enough.

Zero Order Convergence to SOSPs

⇒ Zero order trust region methods with quadratic models
Can take O(d 4) operations per iteration
⇒ Gaussian smoothing reduction to first order methods
Leads to poly(d , 1/ε) slowdown compared to first order methods

Is that really necessary?

Finite differences

rf (x, h) =

∑d

l=0
f (x + hel)− f (x)

h el when h 6= 0
∇f (x) if h = 0

Properties for `-gradient Lipschitz f
⇒ Approximates well the gradient

‖∇f (x)− rf (x, h)‖ ≤
√
d`|h|

⇒ Is `
√
d Lipschitz
‖rf (y, h)− rf (x, h)‖ ≤

√
d`‖y− x‖

Approximate gradient descent (AGD)

χk+1 = g0(χk) ,
xk+1
hk+1

 =
xk − ηrf (xk, hk)

βhk

→ When β ∈ (0, 1) xk same fixed points as GD.
But: Does it converge to SOSPs?

Differences with Gradient Descent

⇒ Non autonomous dynamical system: hk changes
⇒ Does h0 affect convergence to SOSPs?
⇒ Point-wise convergence for non-isolated fixed points?

Theorem (Convergence to minimizers)

Let f : Rd → R ∈ C 2 be a `-gradient Lipschitz function. Let us also
assume that f is analytic, has compact sub-level sets and all of its
saddle points are strict. Let η < min{ 1

`
√
d ,

1
2`} and β < 1− 2η`. If we

pick a random initialization point x0, then we have that for the xk
iterates of g0

∀h0 ∈ R : Pr(lim
k→∞

xk = x∗) = 1
where x∗ is a local minimizer of f .

Full version at arxiv:TBA

What about efficiency?

Gradient descent can take exponential time to converge to SOSPs
⇒ Perturbed GD (PGD): add noise to iterates when gradient is low
⇒ PGD converges to SOSPs in polylog(d) time
⇒ Does it work for AGD?

Challenges compared to PGD

We address:
⇒ Detecting low gradient only with function evaluations
⇒ Escaping strict saddles even if value of f is not decreasing
⇒ Escaping strict saddles without hk going to zero
⇒ polylog(d) calls to rf , same as ∇f calls in PGD up to constants

Theorem (Analysis of Perturbed AGD (PAGD))

If f is `-gradient Lipschitz and ρ-Hessian Lipschitz, then for any δ > 0,
ε ≤ `2

ρ , ∆f ≥ f (x0)− f ?, with probability 1− δ, the output of PAGD
will be an ε-SOSP, and use

O
d `(f (x0)− f ?)

ε2
log4

(d`∆f
ε2δ

)
evaluations of f .

Experiments

0 200 400 600 800 1000
Iterations

2000

1500

1000

500

0

f(x
k)

GD
PGD
AGD
PAGD

Figure: Octopus function with d = 15.

⇒ Octopus-like function with sequences of strict saddle points
⇒ GD and AGD take progressively longer time to escape each saddle
⇒ PAGD takes the same number of iterations to converge as PGD

