Efficiently avoiding saddle points with zero order methods: No gradients required Lampros Flokas*, Emmanouil V. Vlatakis-Gkaragkounis*, Georgios Piliouras #### Introduction \Rightarrow Given function $f: \mathbb{R}^d \to \mathbb{R}$, solving the problem $$\mathbf{x}^* = rg\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$$ is one of the building blocks that many machine learning algorithms are based on. ⇒ Unfortunately access to gradient evaluations may be either computationally inefficient or even impossible. **Examples**: Hyper-parameter tuning, black-box adversarial attacks on DNN, computer network control, Simulation or Bandit optimization. Are there scalable zero order methods that can safely and efficiently avoid strict saddle points and always converge to local minima of $f(\mathbf{x})$? ### Saddle points \Rightarrow Strict saddle points: $\nabla f = \mathbf{0} \ \& \ \lambda_{\min}(\nabla^2 f) < 0$ Figure: Strict saddle points are not second order stationary \Rightarrow Non strict saddle points $\nabla f = \mathbf{0} \& \lambda_{\min}(\nabla^2 f) = 0$ Can be local minimum or just second order stationary point. If only strict saddles, convergence to SOSPs is enough. # Zero Order Convergence to SOSPs - \Rightarrow Zero order trust region methods with quadratic models Can take $\mathcal{O}(d^4)$ operations per iteration - \Rightarrow Gaussian smoothing reduction to first order methods Leads to $\mathrm{poly}(d,1/\epsilon)$ slowdown compared to first order methods Is that really necessary? #### Finite differences $$r_f(\mathbf{x}, h) = \begin{cases} \sum_{l=0}^d \frac{f(\mathbf{x} + h\mathbf{e}_l) - f(\mathbf{x})}{h} \mathbf{e}_l & \text{when } h \neq 0 \\ \nabla f(\mathbf{x}) & \text{if } h = 0 \end{cases}$$ Properties for ℓ -gradient Lipschitz f ⇒ Approximates well the gradient $$\|\nabla f(\mathbf{x}) - r_f(\mathbf{x}, h)\| \leq \sqrt{d}\ell |h|$$ \Rightarrow Is $\ell \sqrt{d}$ Lipschitz $$||r_f(\mathbf{y},h)-r_f(\mathbf{x},h)|| \leq \sqrt{d}\ell ||\mathbf{y}-\mathbf{x}||$$ # Approximate gradient descent (AGD) $$oldsymbol{\chi}_{k+1} = g_0(oldsymbol{\chi}_k) riangleq egin{pmatrix} oldsymbol{x}_{k+1} \ h_{k+1} \end{pmatrix} = egin{pmatrix} oldsymbol{x}_k - \eta r_f(oldsymbol{x}_k, h_k) \ eta h_k \end{pmatrix}$$ \rightarrow When $\beta \in (0,1)$ \mathbf{x}_k same fixed points as GD. **But:** Does it converge to SOSPs? # Differences with Gradient Descent - \Rightarrow Non autonomous dynamical system: h_k changes - \Rightarrow Does h_0 affect convergence to SOSPs? - ⇒ Point-wise convergence for non-isolated fixed points? # Theorem (Convergence to minimizers) Let $f: \mathbb{R}^d \to \mathbb{R} \in C^2$ be a ℓ -gradient Lipschitz function. Let us also assume that f is analytic, has compact sub-level sets and all of its saddle points are strict. Let $\eta < \min\{\frac{1}{\ell\sqrt{d}}, \frac{1}{2\ell}\}$ and $\beta < 1 - 2\eta\ell$. If we pick a random initialization point \mathbf{x}_0 , then we have that for the \mathbf{x}_k iterates of g_0 $$orall h_0 \in \mathbb{R}: \quad \mathsf{Pr}(\lim_{k o \infty} \mathbf{x}_k = \mathbf{x}^*) = 1$$ where \mathbf{x}^* is a local minimizer of f. #### Full version at arxiv: TBA ### What about efficiency? Gradient descent can take exponential time to converge to SOSPs - \Rightarrow Perturbed GD (PGD): add noise to iterates when gradient is low - \Rightarrow PGD converges to SOSPs in polylog(d) time - ⇒ Does it work for AGD? ### Challenges compared to PGD #### We address: - ⇒ Detecting low gradient only with function evaluations - \Rightarrow Escaping strict saddles even if value of f is not decreasing - \Rightarrow Escaping strict saddles without h_k going to zero - $\Rightarrow \operatorname{polylog}(d)$ calls to r_f , same as ∇f calls in PGD up to constants #### Theorem (Analysis of Perturbed AGD (PAGD)) If f is ℓ -gradient Lipschitz and ρ -Hessian Lipschitz, then for any $\delta > 0$, $\epsilon \leq \frac{\ell^2}{\rho}$, $\Delta_f \geq f(\mathbf{x}_0) - f^*$, with probability $1 - \delta$, the output of PAGD will be an ϵ -SOSP, and use $$\mathcal{O}\left(d\frac{\ell(f(\mathbf{x}_0) - f^*)}{\epsilon^2}\log^4\left(\frac{d\ell\Delta_f}{\epsilon^2\delta}\right)\right)$$ evaluations of f. # Experiments Figure: Octopus function with d = 15. - ⇒ Octopus-like function with sequences of strict saddle points - ⇒ GD and AGD take progressively longer time to escape each saddle - \Rightarrow PAGD takes the same number of iterations to converge as PGD